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ABSTRACT
A comprehensive understanding of uncertainty sources in

experimental measurements is required to develop robust ther-
mochemical models for use in industrial applications. Due to
the complexity of the combustion process in gas turbine engines,
simpler flames are generally used to study fundamental combus-
tion properties and measure concentrations of important species
to validate and improve modelling. Stable, laminar flames have
increasingly been used to study nitrogen oxide (NOx) formation
in lean-to-rich compositions in low-to-high pressures to assess
model predictions and improve accuracy to help develop future
low-emissions systems. They allow for non-intrusive diagnostics
to measure sub-ppm concentrations of pollutant molecules, as
well as important precursors, and provide well-defined bound-
ary conditions to directly compare experiments with simulations.
The uncertainties of experimentally-measured boundary condi-
tions and the inherent kinetic uncertainties in the nitrogen chem-
istry are propagated through one-dimensional stagnation flame
simulations to quantify the relative importance of the two sources
and estimate their impact on predictions. Measurements in lean,
stoichiometric, and rich methane-air flames are used to investi-
gate the production pathways active in those conditions. Various
spectral expansions are used to develop surrogate models with

∗Corresponding author. Email: jeff.bergthorson@mcgill.ca

different levels of accuracy to perform the uncertainty analysis
for 15 important reactions in the nitrogen chemistry and the 6
boundary conditions (φ , Tin, uin, du/dzin, Tsurf, P) simultane-
ously. After estimating the individual parametric contributions,
the uncertainty of the boundary conditions are shown to have
a relatively small impact on the prediction of NOx compared to
kinetic uncertainties in these laboratory experiments. These re-
sults show that properly calibrated laminar flame experiments
can, not only provide validation targets for modelling, but also
accurate indirect measurements that can later be used to infer
individual kinetic rates to improve thermochemical models.

INTRODUCTION
Reducing NO and NO2 (NOx) emissions has become a pri-

ority in the gas turbine industry to mitigate the environmental
impact of energy production and satisfy the increasingly strin-
gent regulations on pollutant emissions. The risks and costs as-
sociated with the development of novel low-emissions combus-
tion systems have promoted the use of numerical simulation tools
in preliminary design to identify promising configurations. Pre-
dictions of NOx emissions at elevated-pressures, however, were
found to be generally inaccurate and plagued with significant un-
certainties [1,2]. For these numerical tools to become predictive,
a thorough understanding of uncertainty sources is necessary to
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help identify promising combustors with confidence.
Validation of thermochemical mechanisms should therefore

be performed in experimental conditions that minimize system-
atic and random uncertainty sources, such that the discrepan-
cies observed between experimental measurements and simula-
tions result from modelling inaccuracies. When simulating these
cases, however, uncertainties generally come from two sources:
boundary conditions and kinetic modelling. The random fluc-
tuations of the boundary conditions can have significant impact
on predictions in engine-relevant operation [3], but their impact
in controlled experimental facilities have not been fully quan-
tified. Inherent modelling uncertainty arise from the choice of
reactions and species included in a thermochemical mechanism
and from kinetic parameters, such as specific reaction rate con-
stants, activation energy, etc. Kinetic uncertainty comes from
an initial lack of knowledge and it can therefore be remedied,
or reduced, with additional increasingly accurate experimental
measurements from the community [4, 5], independent evalua-
tions from first principles [6], or through uncertainty quantifica-
tion techniques [7]. Sampling methods, previously used to per-
form model optimization and uncertainty quantification [8,9], are
now being replaced with advanced spectral techniques to signif-
icantly reduce computational time. The surrogate models gener-
ated with spectral expansions then provide statistics on the quan-
tities of interest, similarly to sampling methods, but also rela-
tionships between uncertain parameters to investigate chemical
modelling [7, 10, 11, 12]. Forward uncertainty propagation has
been used to quantify NO prediction uncertainty in various con-
figurations to identify problematic reactions [3, 9, 13, 14].

The interactions between the four NOx pathways found in
hydrocarbon flames [15]: thermal, prompt, N2O, and NNH,
make it difficult to isolate individual reactions to obtain di-
rect reaction rate measurements similar to other chemical sub-
models [5]. For instance, production through the NNH route
occurs in the radical pool at the flame front and involves tens
of reactions with some of them linked to the N2O pathway. As
such, indirect measurements have been used to investigate the
nitrogen chemistry. Flow reactors [16] and laminar flames stabi-
lized with McKenna [17, 18], jet-wall stagnation [19, 1, 20], and
counterflow [21,22] burners have been used to study NOx forma-
tion in experiments designed to target specific production routes
to provide independent experimental datasets to improve mod-
elling. Out of the four formation routes, the thermal and prompt
routes have been the focus of more experiments by increasing the
contribution of each route in high-temperature environments and
in hydrocarbon-fuel rich conditions, respectively.

The impact of uncertain boundary conditions and inher-
ent kinetic uncertainty on NOx predictions is quantified in this
work for a jet-wall stagnation flame configuration. Lean-to-rich
methane-air mixtures are used to assess the validity of using in-
direct measurements obtained with laminar flames to improve
chemical modelling. Using nested sparse grid spectral expan-

sions, NO prediction uncertainties are quantified for 6 boundary
conditions (φ , Tin, uin, du/dzin, Tsurf, P) and 15 important reac-
tions in the nitrogen chemistry simultaneously. The contribution
of individual parameters and interactions between parameters is
explored to identify dominant sources of uncertainty that would
benefit from additional measurements to improve modelling.

METHODOLOGY
The experimental configuration used in this work is de-

scribed in [19, 23] where quantitative measurements of NO and
CH profiles are presented, respectively. The jet-wall stagnation
burner shown in Fig. 1 provides stable, laminar, and lifted flames
accessible for laser diagnostics with accurate experimentally-
measured boundary conditions to directly compare measure-
ments with simulations. The measured boundary conditions in
a laboratory environment provide minimal uncertainty which al-
lows for precise investigation of uncertainty sources.

Experimental apparatus
The premixed fuel-air mixture, shrouded by a co-flowing

inert gas, exits the bottom nozzle in Fig. 1 and impinges on a
water-cooled stagnation surface whose temperature is monitored
with three K-type thermocouples throughout the experiments to
prevent surface reactions. In this configuration, the flame stabi-
lizes at the location where its propagation speed matches the ve-
locity of the decelerating impinging flow. Flames are stabilized
sufficiently upstream of the stagnation surface to exhibit nearly-
adiabatic conditions. These careful considerations ensure that the
measured reactivity and emissions are solely a function of the
properties of the combustible mixtures. Velocity, NO concen-
tration, and temperature profiles measured with particle track-
ing velocimetry, laser-induced fluorescence (LIF), and multi-line
NO-LIF thermometry, respectively, provide experimental targets
for model improvement.

Experimentally-measured boundary conditions provided by
Watson et al. [19] to allow for direct simulation of the exper-
iments are summarized in Appendix A along with their mea-
sured uncertainty. In this configuration, boundary conditions
required for the stagnation surface and the gas inlet are shown
in Fig. 1. By definition, there is no species flux and a null
axial velocity at the wall. The temperature is carefully moni-
tored with thermocouples to provide the wall-boundary condi-
tion. Similarly, the inlet temperature of the combustible mixture
is monitored throughout the experiments with K-type thermo-
couples. The mixture composition is controlled by thermal mass
flow controllers, calibrated with a dry-piston calibrator, that pro-
vide an accuracy of ±0.7% on the equivalence ratio. Velocity-
boundary conditions are obtained from Particle Tracking Ve-
locimetry (PTV) [19,23]. A least-squares parabolic fit in the cold
flow region upstream of the flame provide the inlet axial veloc-
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FIGURE 1. IMPINGING JET-WALL STAGNATION BURNER USED BY WATSON ET AL. [19]. TEMPERATURE (RED) AND VELOCITY
(GREEN) PROFILES WITH ACCURATE EXPERIMENTALLY-MEASURED BOUNDARY CONDITIONS USED IN SIMULATIONS.

ity, uin, and strain, du/dzin. The numerical domain length, l, is
measured from the stagnation surface to the axial location where
the velocity-boundary conditions are measured from.

Simulations are performed with the quasi-one dimen-
sional (1D) model provided in Cantera 2.4 [24] with the
experimentally-measured boundary conditions to allow for direct
comparison with the experiments. The thermochemical mecha-
nism used in this work is assembled from the base chemistry of
the 2015 San Diego mechanism [25] optimized for accurate CH
chemistry [26] and the nitrogen chemistry from the NOMecha
2.0 mechanism [18]. To ensure a systematic comparison between
the lean (φ = 0.8), stoichiometric (φ = 1.0), and rich (φ = 1.3)
cases, the uncertainty in NO concentration predictions is evalu-
ated 10 ms downstream of the flame, defined as the peak concen-
tration of methylidyne radicals, [CHpeak].

Probabilistic input parameter definition
The uncertainty analysis investigates the impact of 21 pa-

rameters on the predictions of NO concentrations and [CHpeak].
The six uncertain operating conditions include the equivalence
ratio (φ ), inlet temperature (Tin), stagnation plate temperature
(Twall), inlet velocity (uin), inlet velocity gradient (du/dzin), and
ambient pressure (P). The experimentally-measured boundary
conditions, along with their uncertainties, reported by Watson

and co-workers [19], are used to bound the analysis. The uncer-
tainty in these parameters mostly results from random fluctua-
tions in the measuring equipment and are therefore assumed to
be randomly distributed around their averaged value.

The remaining 15 uncertain parameters are the specific re-
action rate constants of reactions having both a high uncer-
tainty and a large impact on NO formation, as identified with
uncertainty-weighted sensitivity analysis in [14]. The entire
thermochemical mechanism is analysed through the uncertainty-
weighted sensitivity analysis. The important reactions identi-
fied through this process do not include reactions from the NNH
and N2O pathways as the experiments considered mostly attempt
to isolate the contributions of the thermal and prompt routes
through the high-temperature atmospheric flames and the rich
flame, respectively. The upper and lower uncertainty limits, ex-
pressed with the multipliers 1/ fi,low and fi,high, from [14] bound
the uncertainty of the kinetic domain. Since the data is too sparse
to derive any meaningful statistics for the rate constants, uniform
distributions are used in this analysis.

Spectral expansion
Spectral expansion is used to obtain a surrogate model that

describes the relationship of the desired response variable as a
function of the uncertain parameters. Similarly to a Fourier
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expansion for periodic signals, a polynomial chaos expansion
(PCE) captures the response variable R with respect to the in-
put parameters x with orthogonal polynomial combinations. The
complete expansion is presented in Eq. 1 where R0 is a constant,
α are real coefficients, and Pi is the orthogonal polynomial basis
of interaction order i. It can be written in a compact form in Eq. 2
with multivariate polynomials Ψi.

R(x) =R0 +
∞

∑
k1=1

αk1P1(xk1)+
∞

∑
k1=1

∞

∑
k2=1

αk1,k2P2(xk1 ,xk2) (1)

+
∞

∑
k1=1

∞

∑
k2=1

∞

∑
k3=1

αk1,k2,k3P3(xk1 ,xk2 ,xk3)...,

=R0 +
∞

∑
k=1

αkΨk(x) =
∞

∑
k=0

αkΨk(x). (2)

For practical considerations, the expansion is truncated to the de-
sired polynomial order p where the number of terms in the ex-
pansion, K, depends on the number of parameters, the maximum
polynomial order, and the spectral technique selected.

R(x)≈ R0 +
K

∑
k=1

αkΨk(x) =
K

∑
k=0

αkΨk(x). (3)

Known polynomial bases corresponding to specific distribu-
tions are used in the expansion, Legendre and Hermite polynomi-
als for uniform and normal distributions [27], respectively. The
coefficients can then be evaluated using regression, or spectral
projection on the orthogonal polynomial basis functions with

αk =

〈
R,Ψk

〉〈
Ψk,Ψk

〉 =
1〈

Ψk,Ψk
〉 ∫

Γ

R(x)Ψk(x)ρx(x)dx, (4)

where ρx is the joint probability density of the input parameters,
and Γ is the interval for integration or sample space. For com-
plex multivariate systems, the integral is calculated numerically.
The numerical integration and surrogate model development are
performed with Dakota [28] using the framework from [14]. De-
tails on the derivation of the integration can be found for various
spectral collocation techniques in [29, 30]. The development of
the numerical integration for the two strategies considered in this
work to evaluate the coefficients of the expansion, the total-order
and tensor-product expansions, can be found in [14] while key
differences between the methods are summarized here.

The total-order expansion can be considered one of the
simplest technique to evaluate the polynomial coefficients. It
bounds the maximum order of the response surface with the pre-
scribed order p resulting in a linear response surface for a 1st–

order expansion, a quadratic response surface for a 2nd–order ex-
pansion, etc. A Monte Carlo integration is often used to evaluate
the integral. Random collocation points in the uncertain domain
are evaluated to constrain the K terms of the expansion and poly-
nomial coefficients can be obtained via regression or Eq. 4. Ad-
vanced sampling techniques, such as Latin Hypercube Sampling,
can be used to improve the accuracy of the surrogate model over
a traditional random sampling. This technique requires a mini-
mum of K collocation points to develop the surrogate model, but
will benefit from additional samples to provide a better coverage
of the entire uncertain domain. With the 21 parameters selected,
253 collocation points are required for a 2nd–order expansion.

The tensor-product expansion uses deterministic quadra-
ture methods instead of random sampling. Contrary to total-
order expansions, tensor-product methods do not limit the max-
imum order of the polynomials, but rather limit the number of
variables in multivariate terms of the expansion. Consequently,
for a level 1 expansion, ℓ1, the terms of the expansion would con-
tain up to one parameter, for a ℓ2 expansion there would be up
to two parameters per term, etc. In this case, the order of the
expansion is determined by additional considerations such as the
recursiveness of the technique or the shape of the structured grid.

Nested sparse grids are used in this work to develop the sur-
rogate models. This technique contains a subset of collocation
points from the tensor-product expansion that was proposed to
alleviate the high computational costs of the full tensor-product
expansion while retaining its accuracy in high-dimensional prob-
lems [31]. Most of the analysis in this work is performed with a
ℓ2 nested sparse grid formulation. The response surfaces devel-
oped under this approach yield polynomials reaching a 5th–order
approximation for single parameters and pairwise, or two vari-
ables, interactions up to the 4th–order. In this case, 979 colloca-
tion points are required to develop the surrogate models.

Parametric contribution analysis
Specific polynomial bases are associated with each parame-

ter distribution. For the normally distributed boundary conditions
and the uniformly distributed kinetic parameters, probabilist Her-
mite and Legendre polynomials are used, respectively [27]. The
first three non-constant basis functions are given in Table 1.

TABLE 1. POLYNOMIAL BASIS FUNCTIONS.
Hermite (Normal) Legendre (Uniform)
P1(x) = x P1(x) = x
P2(x) = x2 −1 P2(x) = (x3 −1)/2
P3(x) = x3 −3x P3(x) = (5x3 −3x)/2

Normalized variables are used in the expansion. Normally-
distributed parameters have a mean of 0 and a standard devia-
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tion of 1 and uniformly-distributed ones are bounded between
−1 and 1. By definition, the mean of the surrogate model is
then equal to the constant term R0. Every αP term of the expan-
sion in Eq. 1 can be viewed as a deviation from the mean R0. If
all the polynomials are from the same family, only Hermite for
instance, the relative contribution from each term can be deter-
mined by directly comparing the magnitude of the coefficients
α [10]. When multiple polynomial bases with different order are
used in the expansion, the entire term αP needs to be considered.
The contribution of single parameters, cxi , and groups of param-
eters, cxi,x j are assembled in Eqs. 5 and 6 to evaluate the impact
of single parameters and parameter interactions.

cxi =αiP1(xi)+αi,iP2(xi)+ ... (5)
cxi,x j =αi, jP2(xi,x j)+ ... (6)

By definition, the expectation of every contribution c is null and
its standard deviation estimates the impact to global uncertainty.
For systematic comparison between parameters in the expansion,
the contributions c are normalized by the mean response of the
surrogate model, R0, before the standard deviation is evaluated
by sampling over S independent sets of parameters with

σcxi
=

√
∑

S
s=1(cxi,s/R0)

2

S
, (7)

RESULTS
Demonstration of contribution analysis for φ = 0.8

The contribution analysis is first performed for the lean,
φ = 0.8, methane-air flame to demonstrate the processing steps to
obtain contribution grids. A level-2, ℓ2, nested sparse grid with
979 simulation points is used to generate the surrogate model.
Peak concentrations of methylidyne radicals, [CHpeak], and NO
concentrations are extracted from the surrogate model. NO con-
centrations are evaluated 10 ms downstream of the flame front,
defined as the location of [CHpeak], to achieve residence times
comparable to gas turbine architectures. The PDF evaluating the
uncertainty on NO prediction is shown in Fig. 2 where the width
of the distribution corresponds to the prediction uncertainty. The
effect of different uncertainty sources, from boundary conditions
and kinetic parameters, on predictions is explored by activating
specific sections of the polynomial expansion and are shown in
Fig. 2 against the complete response.

The impact of boundary condition uncertainties are shown
to have a minimal effect of the prediction of NO molecules as
observed by the narrow distribution. Although the experiment is
very sensitive to some boundary conditions, such as φ and inlet
temperature, the narrow operating uncertainties on the equipment

FIGURE 2. [NO] DISTRIBUTIONS AT φ = 0.8 FOR THE COM-
PLETE EXPANSION ( ), BOUNDARY CONDITIONS ONLY
( ), AND KINETIC PARAMETERS ONLY ( ).

mitigate their impact on predictions. Contrary to industrial ap-
plications where the boundary condition uncertainty is expected
to be around 4% [3], the impact of fluctuating boundary con-
ditions is minimized in this controlled setting where the uncer-
tainty is generally below 1%. The PDF accounting for chemical
kinetic contributions only, however, is almost identical to the re-
sult obtained from the complete polynomial description. These
results suggest that the chemical kinetic terms cause almost all
the NO uncertainty in this experiment, with little impact from
the uncertain boundary conditions. Consequently, laminar flame
experiments with well-defined experimentally-measured bound-
ary conditions provide ideal configurations to obtain data of key
combustion parameters. Since NO concentration measurements
have a 95% confidence interval of approximately 15%–20% in
this experimental apparatus, depending on operating conditions,
and the ±2σ prediction interval covers [−53%,+131%] of the
average value, stagnation flame experiments can produce useful
data to improve kinetic modelling using indirect measurements.

The major sources of uncertainties are identified by group-
ing the contribution of individual parameters. For this analysis
with 6 uncertain boundary conditions and 15 uncertain specific
reaction rate constants, the polynomial expansion becomes

R(y,z) = R0 +
6

∑
k1=1

cyk1
+

6

∑
k1=1

6

∑
k2=1

cyk1 ,yk2
(8)

+
15

∑
m1=1

czm1
+

15

∑
m1=1

15

∑
m2=1

czm1 ,zm2

+
6

∑
k1=1

15

∑
m1=1

cyk1 ,zm1
,

where the terms are grouped with respect to boundary conditions,
yk, kinetic parameters, zm, and their combinations. The ℓ2 sparse
grid only considers pairwise parameter interactions, leading to
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the double-summation grouped terms in Eq. 8 for interactions
between 1) boundary condition - boundary condition, 2) rate con-
stant - rate constant, and 3) boundary condition - rate constant.

The sums of the contribution values of the boundary con-
ditions, the reaction rate constants, and their interactions to the
prediction uncertainty on NO concentrations are compared using
σcxi

, defined in Eq. 7. The relative importance of the contribution
of each group is evaluated with respect to the uncertainty from
the complete surrogate model predictions. For the lean flame,
the boundary conditions, kinetic parameters, and their interac-
tions contribute to 2%, 95%, and 3%, respectively, of the NO
prediction uncertainty. These results are expected from the PDF
comparison presented in Fig. 2, where the narrow distribution
of the boundary conditions suggested a negligible contribution.
Similarly, interactions between the two sources of uncertainties
lead to negligible impact on the prediction as well.

The contribution values of individual variables can be de-
composed as well from Eq. 7. Individual parametric contribu-
tions are visualized in Fig. 3 for the 21 parameters studied. Since
the contribution matrices are symmetric, the upper right trian-
gular region presents the impact of uncertainty sources on the
[CHpeak] while the bottom left triangle shows the impact on NO
concentration. This visualization allows for rapid identification
of important relationships between the two quantities of interest,
where the colour intensity of each square represents the amount
of contribution from the corresponding variable towards the out-
put variable uncertainty. In this representation, the diagonal cor-

FIGURE 3. CONTRIBUTION TO NO ( ) AND CH ( ) UNCER-
TAINTIES USING ℓ2 SPARSE GRID FOR φ = 0.8 CONDITIONS.

responds to direct impact of a given uncertain parameter to the
global uncertainty, while off-diagonal terms present the impact
of pairwise polynomials, or cross-term interactions.

In these laboratory experiments, the kinetic uncertainty
dominates the variability in both, NO and [CHpeak]. For the lean
flame, the uncertainty in NO prediction is distributed between the
thermal and prompt formation mechanisms. Unsurprisingly, the
reactions greatly affecting the formation of CH in turn affect the
NO formation through the prompt pathway. Although the initi-
ation reaction, CH+N2 ⇋ H+NCN, greatly affects prediction
uncertainty, the pairwise interactions with other reactions involv-
ing CH present significant contributions to the uncertainty. This
supports the discussion by Versailles et al. about the need for
an adequate description of the CH chemistry to accurately cap-
ture NO formation [23]. Since CH is considered to be present
in quasi-steady state in the flame, individual reactions involved
with CH greatly affect the global concentration present in the
flame and, consequently, the prompt-NO formation.

Impact of uncertainties in lean-to-rich flames
The individual parametric contributions for the stoichiomet-

ric, φ = 1.0, and rich, φ = 1.3, methane-air flames are presented
in Figs. 4 and 5, respectively. Similarly to the lean case, the un-
certainty in both quantities of interest is dominated by the inher-
ent uncertainty of the thermochemical mechanism. The relative
impacts of the grouped contribution values on NO uncertainty
are compared in Table 2 for the lean-to-rich cases. The stoichio-
metric flame presents the largest impact of boundary conditions.
In this case, the equivalence ratio has a greater impact on the
solution since small fluctuations can lead to different behaviour
whether these fluctuations in the equipment push the mixture on
the lean or rich side. Nonetheless, the uncertainty in boundary
conditions only corresponds to 4% and the kinetic uncertainty
dominates the contribution to prediction uncertainties.

A comparative inspection of Figs. 3, 4, and 5 for the lean,
stoichiometric, and rich cases, respectively, show differences in
the parameters contributing to the prediction uncertainty of both
NO concentration and [CHpeak]. In the stoichiometric case, the
thermal initiation reaction N2 +O ⇌ N+NO is the most impor-
tant uncertainty source while both the thermal and prompt routes
had a similar contribution in the lean case. The stoichiometric
post-flame temperature is higher than the lean mixture, approxi-
mately 2200 K compared to 1980 K, leading to a faster reaction
rate for the rate-limiting step of the thermal mechanism. Conse-
quently, the specific reaction rate constant uncertainty will have
a greater impact on the prediction as a small change can lead
to large prediction discrepancies because of the exponential de-
pendency of temperature in the Arrhenius description of the re-
action. The thermal initiation reaction contribution then rapidly
decreases in the rich mixture. The formation pathway is rapidly
inhibited by the oxygen-deprived environment to the point where
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FIGURE 4. CONTRIBUTION TO NO ( ) AND CH ( ) UNCER-
TAINTIES USING ℓ2 SPARSE GRID FOR φ = 1.0 CONDITIONS.

the thermal pathway does not contribute to the predicted emis-
sions of NO, as expected.

The prompt-NO pathway is shown to be important in the
three mixtures considered. From an even contribution to NO
in lean flames, the contribution of the prompt-NO pathway to
uncertainty decreases slightly in the stoichiometric mixture be-
fore becoming the sole source of uncertainty in the rich flame
with a kinetic uncertainty representing 98% of the global NO
uncertainty. In rich conditions, it is expected that the sole NO
prediction uncertainty comes from the prompt pathway since it
is generally the only formation route considered active in rich
methane-air flames. Among the CH chemistry, the rate-limiting
initiation reaction CH+N2 ⇌ H+NCN is the dominant contrib-
utor to prediction uncertainty. It is important to note that the di-
rect contribution of this reaction alone increases the uncertainty
by approximately 75% of the predicted average in both quanti-
ties of interest. For the rich flame, the remaining NO uncertainty

TABLE 2. CONTRIBUTION TO NO PREDICTION UNCER-
TAINTY USING ℓ2 SPARSE GRIDS.

φ
∑σBC

∑σ

∑σkin

∑σ

∑σBC,kin

∑σ

0.8 2% 95% 3%
1.0 4% 92% 4%
1.3 1% 98% 1%

FIGURE 5. CONTRIBUTION TO NO ( ) AND CH ( ) UNCER-
TAINTIES USING ℓ2 SPARSE GRID FOR φ = 1.3 CONDITIONS.

arises mostly from pairwise interactions between reactions that
greatly impact the peak CH concentration. A similar behaviour
is observed for the CH prediction uncertainty, as expected, since
the uncertainties in the CH chemistry have been shown to prop-
agate through the nitrogen chemistry while being amplified via
the prompt initiation reaction [14].

Contribution of interacting and higher-order terms
In the three cases studied, a majority of the off-diagonal el-

ements are blank, indicating a generally small effect of interac-
tions between uncertain parameters. The only terms that exhibit
strong pairwise impacts are reactions competing for the same re-
actants, such as CH. The boundary conditions do not have a sig-
nificant contribution directly or through interactions with chem-
ical kinetic variables in the cases studied experimentally. This
observation suggests that modelling parameter interactions do
not provide substantially different prediction uncertainties. In
cases where a rapid uncertainty estimate is required, or encour-
aged, developing a surrogate model for the direct impact, in other
words the diagonal of the contribution grids, would result in an
acceptable estimate at reduced costs. The impact of direct and
interacting terms is studied by isolating their contributions from
the polynomial expansion. The analysis is also performed with a
ℓ3 nested sparse grid formulation to explore the impact of higher-
order polynomial bases and three-parameter interactions.

The relative contribution of the direct and pairwise interac-
tions to NO prediction uncertainties are presented in Table 3 for
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FIGURE 6. [NO] DISTRIBUTIONS OBTAINED WITH ℓ2
SPARSE GRIDS AT φ = 0.8 FOR THE COMPLETE EXPANSION
( ) AND DIRECT TERMS ONLY ( ).

the lean, stoichiometric, and rich mixtures. For the conditions ex-
amined, the pairwise interaction of uncertain parameters approx-
imately contributes 40% to the prediction uncertainty. Although
the contribution value is large, the PDFs of the predicted NO
concentrations shown in Fig. 6 for the complete polynomial ex-
pansion and the direct term subset exhibit relatively good agree-
ment. Both distributions have similar widths, but the complete
description has a more refined distribution with sharp increases
in probability on each side of the most probable concentration.
These results suggest that the interaction terms act along the di-
rect behaviour while subtly modifying the general shape of the
distribution. It is expected that interactions between parame-
ters would not completely change the distribution, but the dif-
ferences in PDFs are not as large as the 40% contribution values
suggested. Consequently, the direct relationship between a pa-
rameter and the NO concentration can be estimated at reduced
costs for rapid quantification of uncertainty in predictions in ex-
perimental facilities.

A similar analysis is performed using a surrogate model de-
veloped with a ℓ3 sparse grid to quantify the impact of high-order
polynomial development and three-parameter interactions. The
response surface is obtained for the lean case, φ = 0.8, and re-
quires 15,579 simulation points. The PDFs of the complete poly-
nomial description and its components are presented in Fig. 7.
The direct and pairwise parameter interactions extracted from

TABLE 3. CONTRIBUTION OF DIRECT AND MIXED TERMS
TO NO PREDICTION UNCERTAINTY USING ℓ2 SPARSE GRIDS.

φ
∑σdirect

∑σ

∑σinter.

∑σ

NOdirect NOcomplete

Avg.±Std. Avg.±Std.
0.8 61% 39% 16.1± 6.1 16.1± 6.8
1.0 63% 37% 67.5±23.8 67.5±25.9
1.3 57% 43% 66.5±58.1 66.3±64.7

FIGURE 7. [NO] DISTRIBUTIONS OBTAINED WITH ℓ3
SPARSE GRIDS AT φ = 0.8 FOR THE COMPLETE EXPANSION
( ), DIRECT AND 2-VARIABLE INTERACTION TERMS ONLY
( ), AND DIRECT TERMS ONLY ( ).

the complete ℓ3 surrogate model present similar distributions to
the ones obtained with the ℓ2 approach in Fig. 6, as expected.
The addition of the third level in the nested sparse grid formu-
lation results in minimal changes to the distribution, with only
slightly stretching the peak of the distribution. For this partic-
ular model, the direct terms have a contribution of 35%, the
two-parameter interaction terms 43%, and the three-parameter
interaction terms 22%. Although the three-parameter interac-
tion terms have a contribution value of 22%, it does not seem
to have significantly impacted the width of the PDF. As sug-
gested before, the additional terms in the polynomial description
only favour behaviours already observed in the direct descrip-
tion; increasing the peak probability and shaping the distribution
towards the most probable concentration. The small difference
between the PDFs generated by the polynomial with and without
three-parameter interactions does not seem to justify the signif-
icantly higher computational cost to model three-parameter in-
teractions with 15,579 simulations compared to the 979 required
for ℓ2 sparse grid. The two-parameter interactions are sufficient
to capture the main characteristics of the distributions of NO and
[CHpeak], while keeping the computational cost low.

Inadequacy of low-order analysis
The lean analysis is also performed with a traditional total-

order expansion commonly used to quantify uncertainties. A
2nd–order expansion providing pairwise parameter interactions
is obtained from 253 collocation points A comparison between
PDFs generated from the tensor-product ℓ2 sparse grid and the
2nd–order total-order expansion is shown in Fig. 8 for φ = 0.8.
The total-order expansion surrogate model is observed to have
a wider probability distribution, which is consistent with obser-
vations from [14]. A larger difference between the complete
expansion and the contribution of the direct terms than the ℓ2
sparse grid (Fig. 6) is observed. In the total-order expansion, the
interacting terms are significantly pulling the NO concentration
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FIGURE 8. [NO] DISTRIBUTIONS AT φ = 0.8 OBTAINED WITH
ℓ2 SPARSE GRIDS FOR THE COMPLETE EXPANSION ( ) AND
WITH 2nd–ORDER TOTAL-ORDER EXPANSION FOR THE COM-
PLETE EXPANSION ( ) AND DIRECT TERMS ONLY ( ).

predictions closer to zero while extending the distribution tail to
higher concentration values. Interestingly, the interaction terms
contribute to 84% of the uncertainty with the total-order expan-
sion compared to 39% with the ℓ2 sparse grid.

An individual contribution analysis of the 2nd–order total-
order expansion is shown in Fig. 9. At first glance, the results
look completely different from the sparse grid approach. Com-
pared to the grid plot presented in Fig. 3, the interaction terms
in the total-order expansion have a larger relative contribution
to NO and peak CH uncertainty, as shown by the off-diagonal
coloured elements. These individual contributions completely
differ from the more accurate tensor-product expansions used
previously with ℓ2 and ℓ3 nested sparse grids. It suggests that
although the distributions are similar in shape and most proba-
ble prediction, the underlying surrogate model is unable to ac-
curately capture the expected behaviour of the problem studied.
The ℓ2 sparse grid technique offers higher-order polynomials in
both single parameter and pairwise parameter interactions than
the 2nd–order total-order expansion. As such it exhibits a greater
accuracy in capturing the non-linearities in the surrogate model
and it better captures the relationship between parameters. The
2nd–order total-order captures the overall shape of the distribu-
tion, and the biggest contributors adequately, as shown by the
darker elements in Fig. 9. However, the lighter elements in the
contribution plot suggest an inaccurate response surface in com-
parison to the higher-order ℓ2 sparse grid technique. The inade-
quacy of the 2nd–order total-order expansion to capture param-
eter relationships is visible in the individual contribution grid
as there seem to be no structured relationship identified where
prominent interactions should be present between reactions shar-
ing the same species, at least. For uncertainty quantification
problems focusing on NO and CH formation, advanced sparse
grid expansions are then recommended to capture appropriate
relationship between variables at a reasonable cost to ensure that
model optimizations are properly constrained.

FIGURE 9. CONTRIBUTION TO NO ( ) AND CH ( ) UN-
CERTAINTIES FROM EACH INPUT VARIABLE BY ANALYSING
THE POLYNOMIAL CONSTRUCTED USING SECOND-ORDER
TOTAL-ORDER EXPANSION FOR φ = 0.8 CONDITIONS.

CONCLUSION
The impact of uncertain boundary conditions and kinetic

parameters are investigated in this work to determine the main
source of uncertainty in NO and CH concentration predictions
for an experimental laminar stagnation flame facility. Prediction
uncertainties are quantified for lean-to-rich methane-air flames
using a nested ℓ2 sparse grid methodology to characterize the re-
lationship between the 6 boundary conditions and the 15 specific
reaction rate constants selected for the analysis. Experimentally-
measured boundary conditions with their uncertainties are used
in this work to assess if laminar flame experiments can improve
kinetic modelling through indirect measurements.

Inherent uncertainties in the thermochemical mechanism
used in this work are shown to have a significantly larger effect
on predictions of both NO and CH concentrations than the uncer-
tain experimental boundary conditions. The contribution of in-
dividual parametric sources is obtained to identify the dominant
sources of uncertainty, whether it comes directly from a single
parameter or from interactions between multiple parameters. The
metric, the contribution value to global uncertainty, is calculated
for the lean, stoichiometric, and rich cases (φ = 0.8,1.0,1.3)
studied here and the direct kinetic contribution amounts to 95%,
92%, and 98%, respectively. The predicted uncertainty interval
arising from kinetic parameter is then almost an order of mag-
nitude larger than the measured uncertainty on NO concentra-
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tion measurements. These results confirm that laminar stagna-
tion flame experiments conducted with accurate experimentally-
measured boundary conditions can provide indirect measure-
ments to validate and improve kinetic modelling.

The contribution to global uncertainty is also decoupled be-
tween pairwise parametric interactions and direct impact of sin-
gle parameters for the three equivalence ratios. The results sug-
gest that adequately capturing the direct impact of a single pa-
rameter is primordial to obtain an accurate surrogate model. The
addition of pairwise interactions in the ℓ2 sparse grid expansion
only refines the shape of the probability distribution of NO pre-
dictions, with increased skewness and higher peak probability.
The rate of the prompt initiation reaction has the largest relative
contribution at the rich condition, but its contributions at the lean
and stoichiometric conditions are also comparable to the contri-
butions from the rate of the thermal initiation reaction. These
findings suggest that the prompt initiation reaction, commonly
known to be a key reaction for NO formation in rich flames, has
significant contribution across equivalence ratios.

Traditional 2nd–order total-order expansions are also investi-
gated to assess their capability to capture parameter interactions.
The contribution analysis showed that although the most proba-
ble NO concentration can be estimated adequately, the pairwise
variable interactions are inaccurate. Higher-order approxima-
tions or advanced tensor-product expansions should therefore be
used to examine parametric relationship and perform inference
to constrain the nitrogen and CH chemistry.
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APPENDIX A:Experimental boundary conditions
The experimentally-measured boundary conditions for the

lean, stoichiometric, and rich conditions are provided in Table 4
for the equivalence ratio, φ , the inlet temperature, Tin, the in-
let velocity, uin, the inlet spread rate, Vin = du/dzin, the stagna-
tion surface temperature, Tsurf, the pressure, P, and the numerical
domain length, l. The uncertainty on the boundary conditions
is shown in parentheses. Details regarding the equipment used,
the measurement techniques, and the accuracy of these condi-
tions have been reported by Watson and co-workers [19]. These
boundary conditions are used to simulate the axisymmetric stag-
nation flames with the one-dimensional impinging jet model in
Cantera 2.4 [24].
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